\qquad

Volume Math Check

1. What is the volume of the clay in the cylinder labeled "after"? Write a number sentence to show how you got your answer.

Number sentence

Show how to solve each problem.

2. Liz put a toy car into a graduated cylinder. The water was at 92 cc . The level of the water after Liz took the car out of the graduated cylinder was 47 cc . What is the volume of the toy car?

Number sentence \qquad
3. Rosa put 47 cc of water in a graduated cylinder. She added a small toy. The water level is at 86 cc . What is the volume of the small toy?

Number sentence
\qquad
4. Peter put 35 cc of water and two small toys into a graduated cylinder. One toy is red and the other is blue. The volume in the cylinder with the two toys is 94 cc . The red toy has a volume of 27 cc . What is the volume of the blue toy?

Number sentence \qquad
5. Compare the volumes. Use $<,>$, or $=$.
A. 166 cc +72 cc $\bigcirc 154 c c+93 c c$
B. $148 \mathrm{cc}+102 \mathrm{cc} \bigcirc 89 \mathrm{cc}+161 \mathrm{cc}$
C. 256 cc - 131 cc $\bigcirc 227 c c-118 c c$
6. Josh put 33 cc of water and a wooden block in a graduated cylinder. The total volume with the water and wooden block is 60 cc . Sam put 45 cc of water and a small ball in a different graduated cylinder. The total volume of water and the ball in Sam's cylinder is 60 cc . Sam told Josh that the block and ball have the same volume because the total volume in each cylinder is 60 cc .

Do you agree with Sam? Why or Why not?
\qquad
\qquad
7. Mark wants to fill a fishbowl for his pet, Joe the Fish. The bowl can hold 350 cc of water. The volume of the water and gravel Mark put in the fishbowl is 165 cc . He added a castle with a volume of 98 cc and a plant with a volume of 35 cc . Joe the Fish is 76 cc . Is there enough room so that the bowl doesn't overflow when Mark puts Joe the Fish into the bowl? Explain your thinking.

\qquad

Volume Math Check Feedback Box	Expectation	Check In	Comments
Use words and symbols (e.g., <, >, =) to show comparisons of quantities (e.g., volumes). [Q\# 5]	E1		
Solve addition and subtraction problems (e.g., partwhole, join, compare) involving volume. [Q\# 1-7]	E3		
Read and interpret a variety of scales (e.g., graduated cylinder, thermometer). [Q\# 1, 6]	E4		
Measure volume by displacement using a graduated cylinder. [Q\# 1-4, 6]	E5		

[^0]No, but . . .
No...

MPE1. Know the problem. I read the problem carefully. I know the questions to answer and what information is important. [Q\# 7]				
MPE2. Find a strategy. I choose good tools and an efficient strategy for solving the problem. [Q\# 7]				
MPE5. Show my work. I show or tell how I arrived at my answer so someone else can understand my thinking. [Q\# 7]				
MPE6. Use labels. I I use labels to show what numbers mean. [Q\# 7]				

[^0]: Yes...
 Yes, but . . .

