Answer Key • Lesson 1: Multiplication and Rectangles

Student Guide

Questions 1-18 (SG pp. 66-69)

1.* Rectangles Possible with 12 Tiles

Number of Rows	Number in Each Row	Multiplication Sentence
2	6	2 × 6 = 12
1	12	1 × 12 = 12
3	4	3 × 4 = 12

3.* Rectangles Possible with 18 Tiles

Number of Rows	Number in Each Row	Multiplication Sentence
1	18	1 × 18 = 18
2	9	2 × 9 = 18
3	6	3 × 6 = 18

4.–6.* See Figure 6 in Lesson 1 for possible rectangles for each number from 1–25.

Student Guide - Page 67

*Answers and/or discussion are included in the lesson.

Use t	the rectangles the class made to answer the following questions:	
7.	Which numbers have rectangles with 2 rows? List them from smallest to largest.	
8.	Which numbers have rectangles with 3 rows? List them from smallest to largest.	
A nur make	mber is a multiple of 2 if it equals 2 times another whole number. If you can a rectangle with 2 rows for a number, then it is a multiple of 2.	
Numl Numl	bers that are multiples of two (2, 4, 6, 8, etc.) are called even numbers. bers that are not multiples of 2 (1, 3, 5, 7, etc.) are called odd numbers.	
Wher count They	n you skip count, you say the multiples of a number. For example, skip ting by 3 gives the multiples of 3. The multiples of 3 are 3, 6, 9, 12, and so on. are all the numbers that have rectangles with 3 rows.	
9.	Which numbers on the chart are multiples of 4 (have a rectangle with 4 rows)? List them from smallest to largest.	
10.	Which numbers on the chart are multiples of 5? List them from smallest to largest.	
Pri	me Numbers	
11.	A. How many different rectangles can you make with 5 tiles?B. How many with 7 tiles?	Copyright
Numl name	pers that are larger than one and have only one rectangle have a special b. They are called prime numbers. For example, 5 and 7 are prime numbers.	© Kendall
12.	List the prime numbers between 1 and 25.	HuntF
13.	Are all odd numbers prime? Explain.	ublishing Compa
		ny

Student Guide - Page 68

Student Guide - Page 69

- **7.** 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24
- **8.** 3, 6, 9, 12, 15, 18, 21, 24
- **9.** 4, 8, 12, 16, 20, 24
- **10.** 5, 10, 15, 20, 25
- **11. A.** Only 1 rectangle: 1×5 rectangle $(5 \times 1$ rectangle is the same.)
 - **B.** Only 1 rectangle: 1×7 rectangle $(7 \times 1 \text{ rectangle is the same.})$
- **12.** 2, 3, 5, 7, 11, 13, 17, 19, and 23
- **13.** No, the numbers 9 and 15 are odd, but they are not prime numbers.

15. $36 (6 \times 6 = 36)$ **16. A.** $5 \times 5 = 25$ **B.** $6 \times 6 = 36$ **17. A.** $1 \times 30 = 30$ $2 \times 15 = 30$ $3 \times 10 = 30$ $5 \times 6 = 30$

14. 4, 16, and 25

- $5 \times 6 = 30$
- **B.** No, because there is more than 1 rectangle.
- **C.** No, because none of the rectangles are square.
- **18. A.** Ming could use the boxes with 8 rows of 4 columns or 2 rows of 16 columns.
 - **B.** Ming has 32 rocks, $8 \times 4 = 32$ and $2 \times 16 = 32$, so he could use either of these two boxes. $6 \times 6 = 36$, so there would be 4 spaces left. $3 \times 10 = 30$, so there would not be spaces for two of his rocks.

Answer Key • Lesson 1: Multiplication and Rectangles

Student Guide

Homework

Questions 1–9 (SG pp. 70–71)

1. Rectangles Possible with 20 Tiles

Number of Rows	Number in Each Row	Multiplication Sentence
1	20	1 × 2 <i>O</i> = 20
2	10	2 × 10 = 20
4	5	4 × 5 = 20
5	4	5 × 4 = 20
10	2	1 <i>O</i> × 2 = 20
20	1	20 × 1 = 20

- **2. A.** Yes; Explanations will vary. 36 is a multiple of 2. A rectangle with 2 rows can be made with 36 tiles.
 - **B.** Yes; Explanations will vary. $6 \times 6 = 36$; A square can be made with 36 tiles—6 rows of 6 tiles each.
- **3.** A. 2, 4, 6, 8, 10, 12, 14, 16, 18 . . . 50 **B.** 3, 6, 9, 12, 15, 18, 21, 24, 27 . . . 48 **C.** 5, 10, 15, 20, 25, 30 . . . 50 **D.** 6, 12, 18, 24, 30, 36, 42, 48
- **4. A.** even
 - **B.** odd
 - C. odd
 - **D.** even
- **5.** 0, 4, 6, or 8
- **6. A.** 20, 45, 60, and 35
 - **B.** Yes; 0 or 5
- **7. A.** 21, 12, 33, 24, 15, 36, 27, 18, 39
 - **B.** No, for each last digit, there are some numbers that are multiples of 3 and some that are not.

8. A. $2^2 = 4$

- **B.** $5^2 = 25$
- **C.** $7^2 = 49$
- **D.** $10^2 = 100$
- **9. A.** $8 \times 8 = 64$
- **B.** $3 \times 3 = 9$

C. $9 \times 9 = 81$

 John built rectangles with 20 tiles, but some of his work was erased. Make a data table like this one. Help John fill in the missing numbers.

		Rectar	gles Possible wit	h 20 Tiles	
		Number of Rows	Number in Each Row	Multiplication Sentence	
		1		1 × ? = 20	
			10	? × 10 = 20	
		4		4 × ? = 20	
		5		5 × ? = 20	
			2	? × ? = 20	
		20		20 × ? = 20	
4.	 A. Multiple B. Multiple C. Multiple D. Multiple Tell whether A. 10 	es of 2: Start a es of 3: Start a es of 5: Start a es of 6: Start a er the following B. 17	at 2 and skip cou at 3 and skip cou at 5 and skip cou at 6 and skip cou g numbers are ev C. 2	nt by 2s to 50. nt by 3s to 48. nt by 5s to 50. nt by 6s to 48. en or odd. 21 D.	44
5.	Jane says even numb	that any numb per. What othe	er that ends in 2 r digits can even	-such as 12, 72 numbers end in?	, and 102—is an
6.	 A. Which B. Can yo digit? If 	of the following 20 34 u tell whether f so, tell what o	g are multiples of 45 56 6 a number is a mu digits the multiple	5? 0 73 35 Iltiple of 5 by look s of 5 end in.	king at the last
70	SG • Grade 4 •	Unit 3 • Lesson 1		Multipli	cation and Rectangles

Student Guide - Page 71

Student Activity Book - Page 37

Student Activity Book

Rectangles (SAB p. 37)

*See Figure 6 in Lesson 1 for a completed table.

*Answers and/or discussion are included in the lesson.