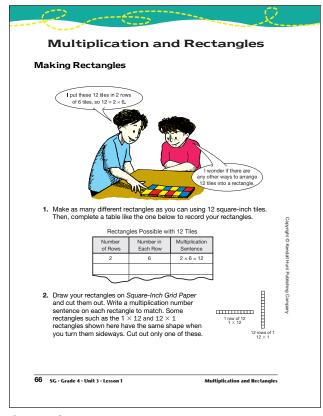
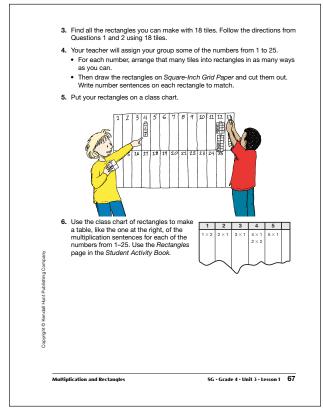

Copyright © Kendall Hunt Publishing Company

Student Guide

Questions 1-18 (SG pp. 66-69)

1.* Rectangles Possible with 12 Tiles


Number of Rows	Number in Each Row	Multiplication Sentence
2	6	2 × 6 = 12
1	12	1 × 12 = 12
3	4	3 × 4 = 12


3.* Rectangles Possible with 18 Tiles

Number of Rows	Number in Each Row	Multiplication Sentence
1	18	1 × 18 = 18
2	9	2 × 9 = 18
3	6	3 × 6 = 18

4.–6.* See Figure 6 in Lesson 1 for possible rectangles for each number from 1–25.

Student Guide - Page 66

Student Guide - Page 67

^{*}Answers and/or discussion are included in the lesson.

Multiples

Use the rectangles the class made to answer the following questions:

- 7. Which numbers have rectangles with 2 rows? List them from smallest
- 8. Which numbers have rectangles with 3 rows? List them from smallest

A number is a **multiple** of 2 if it equals 2 times another whole number. If you can make a rectangle with 2 rows for a number, then it is a multiple of 2.

Numbers that are multiples of two (2, 4, 6, 8, etc.) are called **even numbers**. Numbers that are not multiples of 2 (1, 3, 5, 7, etc.) are called **odd numbers**.

When you skip count, you say the multiples of a number. For example, skip counting by 3 gives the multiples of 3. The multiples of 3 are 3, 6, 9, 12, and so on. They are all the numbers that have rectangles with 3 rows.

- 9. Which numbers on the chart are multiples of 4 (have a rectangle with 4 rows)? List them from smallest to largest.
- 10. Which numbers on the chart are multiples of 5? List them from smallest

Prime Numbers

11. A. How many different rectangles can you make with 5 tiles? B. How many with 7 tiles?

Numbers that are larger than one and have only one rectangle have a special name. They are called **prime numbers**. For example, 5 and 7 are prime numbers.

- 12. List the prime numbers between 1 and 25.
- 13. Are all odd numbers prime? Explain

68 SG · Grade 4 · Unit 3 · Lesson 1

Multiplication and Rectangles

- **7.** 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24
- **8.** 3, 6, 9, 12, 15, 18, 21, 24
- **9.** 4, 8, 12, 16, 20, 24
- **10.** 5, 10, 15, 20, 25
- **11. A.** Only 1 rectangle: 1×5 rectangle $(5 \times 1 \text{ rectangle is the same.})$
 - **B.** Only 1 rectangle: 1×7 rectangle $(7 \times 1 \text{ rectangle is the same.})$
- **12.** 2, 3, 5, 7, 11, 13, 17, 19, and 23
- **13.** No, the numbers 9 and 15 are odd, but they are not prime numbers.

Student Guide - Page 68

Square Numbers

The number nine is special because it has a rectangle that is a square that has three rows and three columns.

- 14. Which other numbers have rectangles that are squares? These numbers are called square numbers
- 15. Find the next largest square number after 25. 16. Another way mathematicians write 3 × 3 is 3². This is read "three to the second power" or "three squared." The raised 2 is called an exponent. Here are some more examples:

 $2^2 = 2 \times 2 = 4$

- A. What is 52?
- B. What is 627

√ Check-In: Questions 17-18

- A. Write the number sentences for the rectangles you can make with 30 tiles.
 - B. Is 30 a prime number? How do you know?
 - C. Is 30 a square number? How do you know?
- 18. A. Ming has 32 rocks in his rock collection. He wants to buy a rectangular display box with one square compartment for each rock. At the store he found boxes with 6 rows of 6 columns; 8 rows of 4 columns; 2 rows of 16 columns, and 3 rows of 10 columns. Which boxes will hold his collection with no empty compartment?
 - B. Show or tell how you know.

Multiplication and Rectangles

SG · Grade 4 · Unit 3 · Lesson 1 69

- **14.** 4, 16, and 25
- **15.** $36 (6 \times 6 = 36)$
- **16. A.** $5 \times 5 = 25$
 - **B.** $6 \times 6 = 36$
- **17. A.** $1 \times 30 = 30$
 - $2 \times 15 = 30$
 - $3 \times 10 = 30$
 - $5 \times 6 = 30$
 - **B.** No, because there is more than 1 rectangle.
 - **C.** No, because none of the rectangles are square.
- **18.** A. Ming could use the boxes with 8 rows of 4 columns or 2 rows of 16 columns.
 - **B.** Ming has 32 rocks, $8 \times 4 = 32$ and $2 \times 16 = 32$, so he could use either of these two boxes. $6 \times 6 = 36$, so there would be 4 spaces left. $3 \times 10 = 30$, so there would not be spaces for two of his rocks.

Copyright © Kendall Hunt Publishing Company

Student Guide

Homework

Questions 1-9 (SG pp. 70-71)

Rectangles Possible with 20 Tiles

Number of Rows	Number in Each Row	Multiplication Sentence
1	20	1 × 20 = 20
2	10	2 × 10 = 20
4	5	4 × 5 = 20
5	4	5 × 4 = 20
10	2	10 × 2 = 20
20	1	20 × 1 = 20

- **2. A.** Yes; Explanations will vary. 36 is a multiple of 2. A rectangle with 2 rows can be made with 36 tiles.
 - **B.** Yes; Explanations will vary. $6 \times 6 = 36$; A square can be made with 36 tiles—6 rows of 6 tiles each.
- **3. A.** 2, 4, 6, 8, 10, 12, 14, 16, 18 . . . 50
 - **B.** 3, 6, 9, 12, 15, 18, 21, 24, 27 . . . 48
 - **C.** 5, 10, 15, 20, 25, 30 . . . 50
 - **D.** 6, 12, 18, 24, 30, 36, 42, 48
- **4. A.** even
 - B. odd
 - C. odd
 - **D.** even
- **5.** 0, 4, 6, or 8
- **6. A.** 20, 45, 60, and 35
 - **B.** Yes; 0 or 5
- **7. A.** 21, 12, 33, 24, 15, 36, 27, 18, 39
 - **B.** No, for each last digit, there are some numbers that are multiples of 3 and some that are not.
- **8. A.** $2^2 = 4$
 - **B.** $5^2 = 25$
 - \mathbf{C} , $7^2 = 49$
 - **D.** $10^2 = 100$
- **9. A.** $8 \times 8 = 64$
 - **B.** $3 \times 3 = 9$
 - **C.** $9 \times 9 = 81$

You can draw pictures of rectangles to help you solve these problems.

- John built rectangles with 20 tiles, but some of his work was erased. Make a
 data table like this one. Help John fill in the missing numbers.
 - Rectangles Possible with 20 Tiles

Number of Rows	Number in Each Row	Multiplication Sentence
1		1 × ? = 20
	10	? × 10 = 20
4		4 × ? = 20
5		5 × ? = 20
	2	? × ? = 20
20		20 × ? = 20

- 2. A. Is 36 an even number? How do you know?
 - B. Is 36 a square number? How do you know?
- 3. Find multiples by skip counting. Write the multiples for each number
 - A. Multiples of 2: Start at 2 and skip count by 2s to 50. B. Multiples of 3: Start at 3 and skip count by 3s to 48.
 - C. Multiples of 5: Start at 5 and skip count by 5s to 50.
 - D. Multiples of 6: Start at 6 and skip count by 6s to 48.
- 4. Tell whether the following numbers are even or odd.

A. 10 **B.** 17 C. 21

5. Jane says that any number that ends in 2—such as 12, 72, and 102—is an even number. What other digits can even numbers end in?

- 6. A. Which of the following are multiples of 5?

 - $20 \quad 34 \quad 45 \quad 56 \quad 60 \quad 73 \quad 35$ **B.** Can you tell whether a number is a multiple of 5 by looking at the last digit? If so, tell what digits the multiples of 5 end in.

70 SG · Grade 4 · Unit 3 · Lesson 1

Multiplication and Rectangles

Student Guide - Page 70

7. A. Which number in each of the following pairs is a multiple of 3?

- B. Can you tell whether a number is a multiple of 3 by looking at its last digit? If so, tell what digits multiples of 3 end in.
- 8. Write the following multiplication problems using exponents. Then multiply.

Example: For 3×3 , write $3^2 = 9$.

B. 5×5 C. 7×7

9. Rewrite the following without using exponents. Then multiply.

Example: For 4^2 , write $4 \times 4 = 16$.

Multiplication and Rectangles

SG · Grade 4 · Unit 3 · Lesson 1 71

Student Guide - Page 71