Date .

 $\times \frac{5}{7}$ N X

Multiplying by 10

Do these problems in your head.

A. 7 × 80 =	B. 6 × 400 =
C. 8000 × 6 =	D. 700 × 4 =
E. <i>n</i> × 60 = 420 <i>n</i> =	F. 800 × <i>n</i> = 800 <i>n</i> =
G. 10 × 700 =	H. 0 × 600 =

N Buying A New Car

The table shows the price of the same model of a new car from 1985 to 1995.

Year	Price of New Car	Price Rounded to Nearest \$500	Ordered Pair (Year, Price)
1985	\$6479		
1987	\$7968	\$8000	(1987, 8000)
1989	\$9140		
1991	\$9405		
1993	\$8730		
1995	\$10,130		

- Round each price to the nearest \$500. Fill in the ordered pairs. Α.
- Use the rounded numbers to make a point graph of the data on a B. piece of Centimeter Graph Paper.
- C. Use a ruler to draw a best-fit line.
- D. In which year did the price of this car model not go up? Did this data point change how you drew your best-fit line? If so, how did it change it? Write your answers on a separate sheet of paper.
- The price of the same model car in 2009 is \$15,505. Does this E. price fall on the best-fit line you drew? If it is not on your line, is it close?