Answer Key • Lesson 6: Function Machines

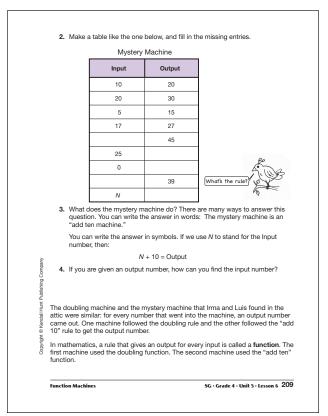
Student Guide

Questions 1-6 (SG pp. 208-210)

I.* Doubling Machine

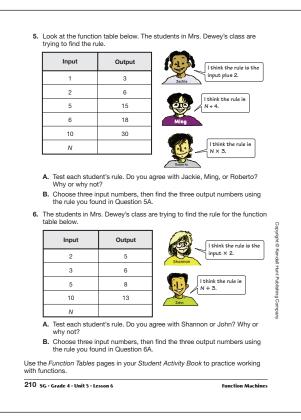
Input	Output
25	50
7	14
14	28
15	30
100	200
50	100
2.5	5
N	2 × N

2.*


Mystery Machine

Input	Output
10	20
20	30
5	15
17	27
35	45
25	35
0	10
29	39
N	N + 10

- **3.** It adds 10 to the input number.
- **4.** Subtract 10 from the output number.


	Doubling	Machine	
	Input	Output	
F	25	50	
	7	14	
	14		
		30	
	100		
L		100	
		5	
L	Ν	2 imes N	
	20		30

Student Guide - Page 209

*Answers and/or discussion are included in the lesson.

Student Guide - Page 210

- **5. A.*** I agree with Roberto because if you multiply every input number by 3 you get the output number.
 - **B.*** Answers will vary.
- 6. A. I agree with John because when I tried Shannon's rule with 2, then 2 × 2 did not equal 5. But, John's rule worked for all the input numbers.
 - **B.** Answers will vary.

*Answers and/or discussion are included in the lesson.