

Student Guide - Page 214

Division Facts and Triangle Flash Cards

\checkmark Self-Check: Question 5
5. Work with a partner. Use the Triangle Flash Cards: $5 s$ and 10 s to practice the division facts. Follow these directions:
A. One partner covers the number in the square. This number will be the answer to a division problem. The answer to a division problem is called the quotient. The number in the circle is the divisor. The divisor is the number that divides the largest number on the flash card. The second below.

B. Place each flash card in one of three piles: Facts I Know Quickly, Facts I Can Figure Out, and Facts I Need to Learn. Make a list of the facts in the last two piles so you can study them at home.
C. Begin your Division Facts I Know chart. Circle the facts you know well and can answer quickly.

For example, Jacob knew $30 \div 5=6.5$ is the divisor, so Jacob circled the 30 in the row for a divisor of 5 .
*Answers and/or discussion are included in the lesson.

Student Guide

Questions 1-12 (SG pp. 214-218)

I. A. $4 \times 7=28,6 \times 7=42,6 \times 8=48$, $6 \times 9=54,7 \times 4=28,7 \times 6=42$, $7 \times 8=56,7 \times 9=63,8 \times 6=48$, $8 \times 7=56,8 \times 9=72,9 \times 4=36$, $9 \times 6=54,9 \times 7=63,9 \times 8=72$
B. Yes. Since Jerome already knows $4 \times 9=36$, he can use a turn-around fact to help him learn $9 \times 4=36$.
2. A. I know $3 \times 7=21 ; 21 \times 2=42$
B. I know $6 \times 6=36 ; 36+7=42$
3. A-B. Answers will vary.
4. Answers will vary. Possible response for 6×8 $=48$: I used a double strategy. I know 3×8 $=24$ and $2 \times 24=48$, so $6 \times 8=48$
5-6.* See Practice Division Facts with Triangle Flash Cards Section of the lesson.
D. Sort the flash cards again. This time your partner covers the number in the circle. The number in the square is now the divisor and the covered number in the circle is the answer to the division problem, the quotient. If we use the same example, 6 is now the divisor. Jacob knew this division problem also, $30 \div 6=5$, so he drew a circle around the 30 in the row for a divisor of 6 on his Division Facts I Know chart. He circled 30 twice on his chart

E. Update your Division Facts I Know chart each time you go through the Update your Division Facts I Know chart each time you go through answer quickly.
F. Discuss how you can figure out facts you do not recall right away. Share your strategies with your partner
G. Practice the last two piles at home for homework-the facts you can Practice the last two piles at home for homework-the facts you can
figure out with a strategy and those you need to learn. Make a list of figure out w
these facts.
6. As you practice the division facts and update your Division Facts I Know chart, compare it to your Multiplication Facts I Know chart
A. Look for facts in the same fact family
B. Why are there no zeros on the Division Facts I Know chart?

You will continue to use Triangle Flash Cards to study all the groups of division facts in the units to come. Update your Division Facts I Know chart each time you go through the cards. If you know one or two of the facts in a fact family, use those facts to help you learn the others.
7. $3 \times 6=18 ; 6 \times 3=18 ; 18 \div 6=3$; $18 \div 3=6$; Tanya is correct.
8. $0 \div 5=$? $5 \times$? $=0$
$5 \times 0=0$, so $0 \div 5=0$
9. $5 \div 0$ is undefined; there is no number that makes $0 \times$ \qquad $=5$ true.
IO. A. 2,2
B. 6,6
C. 5,5
D. 0,0
E. 4, 4
F. Undefined; there is no number that makes $0 \times \square=2$ true.
G. 6,6
H. Undefined; there is no unique solution.
II.* Calculators will display an error message if asked to divide by zero (F and H).
12. A. $5 ; 7 \times 5=35$
B. $0 ; 7 \times 0=0$
C. Undefined; there is no number that makes $0 \times$ \square $=7$ true.
D. Undefined; there is no unique solution. All numbers make $\square \times 0=0$ true.

Zeros and Division

Tanya and Frank were studying their division facts. They began with $18 \div 3$.
Frank wrote, " $18 \div 3=7$."
Tanya wrote, " $18 \div 3=6$."
She said, "One of us must be wrong. There can't be two different answers to the same division problem."
Mrs. Dewey said, "That's right, Tanya. Each division problem has a unique solution. That means that each division problem has only one correct answer. Work together to find the correct answer. Try using fact families."
7. Write the fact family for $18 \div 3$. Who is correct, Tanya or Frank?

Tanya said, "To find the answer to $18 \div 3$, I look for the only number that you can multiply times 3 to get 18 . Since $3 \times 6=18$, then $18 \div 3=6$."
Tanya wrote: $18 \div 3=$? $\quad 3 \times ?=18$

$$
3 \times 6=18 \text {, so } 18 \div 3=6
$$

"That's good thinking," said Mrs. Dewey. "Let's use your reasoning to think abou division and zero. Find $0 \div 24$."
Tanya replied, "To find $0 \div 24,1$ find the only number that you can multiply by 24 and get 0 . Since any number times zero is zero, $24 \times 0=0$ and $0 \div 24=0$."

Tanya wrote: $0 \div 24=? \quad 24 \times ?=0$
0 $0 \times 24=0$, so $0 \div 24=0$
8. Use Tanya's reasoning to find $0 \div 5$.

Mrs. Dewey said, "Tanya, now try $24 \div 0$."
Tanya began, "To find $24 \div 0$, I find the number that you can multiply by 0 and ge 4. But, no number makes the number sentence $0 \times ?=24$ true. What do I do?"
"Since there is no solution for $0 \times ?=24$, we say that $24 \div 0$ is undefined. In fact, if you use your reasoning with any number divided by zero, you will find the same thing. So, mathematicians say that division by zero is undefined."
9. Use Tanya's reasoning to find $5 \div 0$.
Facts I Know: Multiplication and Division

SG • Grade 4-Unit 6-Lesson 1217

Student Guide - Page 217
"Now, think about $0 \div 0$," said Mrs. Dewey.
This time Frank began, "To think about $0 \div 0,1$ try to find the only number that makes the number sentence $0 \times ?=0$ true. But, any number works. $0 \times 5=0$ here is just one right answer I remember you said, 'a unique solution '"
"That's right, Frank," Mrs. Dewey replied. "Since there is not a unique solutio mathematicians say that $0 \div 0$ is undefined as well."
For each statement below, find one number that will make it true. If there is no such number, say so.
10. A. $8 \div 4=\square$, since $4 \times \square=8$ B. $42 \div 7=\square$, since $7 \times \square=42$ C. $5 \div 1=\square$, since $1 \times \square=5$ D. $0 \div 3=\square$, since $3 \times \square=0$ E. $28 \div 7=\square$, since $7 \times \square=28$ F. $2 \div 0=\square$, since $0 \times \square=2$ G. $36 \div 6=\square$, since $6 \times \square=36$ H. $0 \div 0=\square$, since $0 \times \square=0$
11. Do the division problems in Question 10 on a calculator. Explain what happens.
$\sqrt{ }$ Check-In: Question 12
Solve the following problems. When necessary, use "undefined." Justify your easoning using related multiplication sentences.
12. A. $35 \div 7=\square \quad$ B. $0 \div 7=\square$
C. $7 \div 0=\square \quad$ D. $0 \div 0=\square$

218 SG•Grade 4• Unit 6•Lesson 1 Facts I Know: Multiplication and Division

Student Guide - Page 218

Student Guide - Page 219

Student Activity Book - Page 183

Student Guide

Homework (SG p. 219)

Questions 1-6

I. Students practice at home with their Triangle Flash Cards.
2. A. 2,2
B. 9,9
C. 8,8
D. 0,0
E. 4, 4
F. Undefined; there is no number that makes $0 \times \square=7$ true.
3. A. 30
B. 150
C. 15
D. 150
4. A. 200
B. 200
5. A. 350
B. 350
6. A. 450
B. 450

Student Activity Book

Picturing Fact Families

Questions 1-3 (SAB p. 183)

I. A. 35 squares; $7 \times 5=35$
B. 5 squares; $35 \div 7=5$
2. A. 35 squares; $5 \times 7=35$
B. 7 squares; $35 \div 5=7$
3.

Student Activity Book

Mixed-up Tables

Questions 1-15 (SAB pp. 187-188)
I.

x	2	4	8
2	4	8	16
4	8	16	32
8	16	32	64

2.

\times	1	3	9
1	1	3	9
3	3	9	27
9	9	27	81

3. Possible responses: All the products are even or multiples of 4 . The products on the upper right-to-lower left diagonal are the same.
4. Possible responses: All the products are odd. The products on the upper right-to-lower left diagonal are the same.
5.

\times	$\mathbf{1 0}$	$\mathbf{5}$	$\mathbf{0}$
$\mathbf{1 0}$	100	50	0
$\mathbf{5}$	50	25	0
$\mathbf{0}$	0	0	0

6.

\times	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{7}$
$\mathbf{6}$	36	30	42
$\mathbf{5}$	30	25	35
$\mathbf{7}$	42	35	49

7. A. Possible response: All the numbers are 0 .
B. Any number times 0 is 0 .
8. The square numbers are on the upper left-tolower right diagonal.
9.

\times	$\mathbf{8}$	$\mathbf{6}$	4
$\mathbf{8}$	64	48	32
6	48	36	24
4	32	24	16

10.

II.

\mathbf{x}	$\mathbf{2 0}$	$\mathbf{5 0}$	$\mathbf{8 0}$
$\mathbf{9}$	180	450	720
4	80	200	320
7	140	350	560

12.

\times	7	6	4
30	210	180	120
90	630	540	360
100	700	600	400

13.

14.

\div	$\mathbf{4 0}$	$\mathbf{6 0}$	$\mathbf{8 0}$
$\mathbf{1}$	40	60	80
$\mathbf{5}$	8	12	16
$\mathbf{1 0}$	4	6	8

15. Strategies will vary. Students may have used $80 \div 10=8$ to help them solve $80 \div 5=16$
