Student Guide

Questions 1-7 (SG pp. 224-225)

I. Estimates will vary, but will most likely be too low.
2.* A-B. See data table in Figure 2 of Lesson Guide 3.
3.* Descriptions will vary. Some possible patterns include: the number of grains of wheat added each day doubles each day; the total number of grains of wheat grows very quickly; the exponent in the second column is one less than the number of days; and the total number (T) in any row is one less than the number added (N) in the following row.
4.* A. 131,072
B. 262,143
5.* Total number of grains of wheat will reach 1,000,000 on Day 20.
6.*

D Time in Days	Number of Grains of Wheat Added	P Previous Day's TotalTotal Grains of Wheat $N+P=$ Total	
1	1	0	$1+0=1$
2	$2^{1}=2$	1	$2+1=3$
3	$2 \times 2=2^{2}=4$	3	$4+3=7$
4	$2 \times 2 \times 2=3^{3}=8$	7	$8+7=15$
5	$2 \times 2 \times 2 \times 2=2^{4}=16$	15	$16+15=31$
6	$2^{5}=32$	31	$32+31=63$
7	$2^{6}=64$	63	$64+63=127$
8	$2^{7}=128$	127	$128+127=255$
9	$2^{8}=256$	255	511
10	$2^{9}=512$	511	1023
11	$2^{2^{10}=1024}$	1023	2047
12	$2^{11}=2048$	2047	4095
13	$2^{12}=4096$	4095	8191
14	$2^{13}=8192$	8191	16,383
15	$2^{14}=16,384$	16,383	32,767
16	$2^{15}=32,768$	32,767	65,535
17	$2^{16}=65,536$	65,535	131,071
18	$2^{17}=131,072$	131,071	262,143
19	$2^{18}=262,144$	262,143	524,287
20	$2^{19}=524,288$	524,287	$1,048,575$
21	$2^{20}=1,048,576$	$1,048,575$	$2,097,151$

7.* See Figure 5 in Lesson 3.
A. No
B. Descriptions will vary. Students should see that the points fall on a curve or that the points tend to go uphill slowly at first, then very quickly.

Student Guide - Page 224

Writing numbers using exponents in the second column may help you see more patterns. Each of the numbers in the second column of the data table are powers 2^{3} is the "third power of two." Follow the examples to write the powers of two using exponents in your data table. Use a calculator to help you. (Hint: You may need to stop writing $2 \times 2 \times 2 \ldots$ after several rows.)

Doubling Data Table			
\boldsymbol{D} Time in Days	\boldsymbol{N} Number of Grains of Wheat Added	\boldsymbol{P} Previous Day's Total	\boldsymbol{T} Total Number of Grains of Wheat $\boldsymbol{N}+\boldsymbol{P}=$ Total
1	1	0	$1+0=1$
2	$2 \times 1=2$	1	$2+1=3$
3	$2 \times 2=2^{2}=4$	3	$4+3=7$
4	$2 \times 2 \times 2=2^{3}=8$	7	$8+7=15$

Describe any patterns you see in the table.
A. How many grains of wheat will be added on the eighteenth day? B. How many total grains of wheat are needed by the eighteenth day?
. Use the patterns to help you predict when the total number of grains of wheat on the chessboard will reach 1 million.
6. Check your prediction. Complete your data table until the total number of grains of wheat reaches a million

Student Guide - Page 225
*Answers and/or discussion are included in the lesson.

Student Guide - Page 226

Student Guide

Homework (SG p. 226)

Questions 1-3

I. $2^{7}=128$ great-great-great-great-greatgrandparents. Strategies will vary. Students could make a table similar to what they created for the grains of wheat story.
\(\left.$$
\begin{array}{|c|c|c|l|}\hline \begin{array}{c}\text { G } \\
\text { Generation }\end{array} & \begin{array}{c}\boldsymbol{N} \\
\text { Number }\end{array} & \begin{array}{c}\boldsymbol{T} \\
\text { Total }\end{array} & \text { Number Sentence } \\
\hline 1 & 2 \text { parents } & 2 & 1 \times 2=2^{1} \\
\hline 2 & 4 \text { grandparents } & 4 & 2 \times 2=2^{2} \\
\hline 3 & 8 \text { great grandparents } & 8 & 2 \times 2 \times 2=2^{3} \\
\hline 4 & 16 \text { great-great grandparents } & 18 & 2 \times 2 \times 2 \times 2=2^{4} \\
\hline 5 & \begin{array}{c}32 \text { great-great-great } \\
\text { grandparent }\end{array} & 32 & \begin{array}{l}2 \times 2 \times 2 \times 2 \times 2 \\
=2^{5}\end{array} \\
\hline 6 & \begin{array}{c}32 \text { great-great-great-great } \\
\text { grandparent }\end{array} & 64 & \begin{array}{l}2 \times 2 \times 2 \times 2 \times 2 \\
\times 2=2^{6}\end{array} \\
\hline 7 & 128 \text { great-great-great-great-great } \\
\text { grandparent }\end{array}
$$ \quad 128 \quad \begin{array}{l}2 \times 2 \times 2 \times 2 \times 2

\times 2 \times 2=2^{7}\end{array}\right]\)| |
| :--- |

2.* See Figure 4 in the lesson. Replace grains of wheat with pennies.
A. $\$ 5.12$
B. $\$ 10.23$
C. 17 days; $\$ 1310.71$
3. Answers will vary. Taking one cent on the first day, two on the second, four on the third, etc., will give you more money, but you'll have to wait longer to accumulate it. This is the same problem as the one described in the story of doubling grains of wheat. Following the same pattern, on the 20th day you will have received a total of $\$ 10,485.75$ with the doubling option. On the 27th day, you will have received more than one million dollars. On the 30th day you will have more than ten million dollars.

Teacher Guide

John's Problem (TG)

*See lesson for discussion.

\boldsymbol{D} Days Worked	Total Pay Plan \#1 Dollars	Total Pay Plan \#2 Pennies
1	$\$ 1$	1ϕ
2	$\$ 2$	$2 \phi+1 \phi=3 \phi$
3	$\$ 3$	$4 \phi+3 \phi=7 \phi$
4	$\$ 4$	$8 \phi+7 \phi=15 \phi$
5	$\$ 5$	$16 \phi+15 \phi=31 \phi$
6	$\$ 6$	$32 \phi+31 \phi=63 \phi$
7	$\$ 7$	$64 \phi+63 \phi=127 \phi=\$ 1.27$
8	$\$ 8$	$128 \phi+127 \phi=255 \phi=\$ 2.55$
9	$\$ 9$	$256 \phi+255 \phi=511 \phi=\$ 5.11$
10	$\$ 10$	$512 \phi+511 \phi=1023 \phi=\$ 10.23$

Name \qquad Date \qquad

John's Problem

John walked his neighbor's dog for the ten days the neighbor was out of town. His neighbor asked him to choose how he would get paid. Which payment plan should John choose? Why?

Plan \#1: Get \$1 per day.
Plan \#2: Get 1 penny on the first day, two pennies the second day, four pennies the third day, eight pennies on the fourth day, etc.

Show or tell how you decided.

Teacher Guide

