Student Guide

Questions 1-17 (SG pp. 227-231)
I. A. Answers will vary.
B. Answers will vary.
C. Answers will vary.
2. 14,873
3. Answers will vary.
4. Answers will vary.
5. A. 486,902 . Strategies will vary. Possible strategy:

B. $\begin{array}{r}13,098+486,902=500,000 \\ 500,000-13,098=486,902\end{array}$
6. Possible response: $2+900+6000+80,000+$ $400,000=486,902$
7. A. 101,000 ; strategies will vary.

Possible strategy:

B. $399,000+101,000=500,000$
$500,000-399,000=101,000$
8. Answers will vary.

Student Guide - Page 227

6. Maya decided to use her own way to figure out how far 13,098 is from 500,000 . Look at her work.
Write a number sentence that will help Maya finish her solution.
7. A. Nicholas chose two numbers from the class newswire. How far is it from 399,000 to 500,000? Show your thinking.
B. Complete the number sentences 399,000 + \qquad $=500,000$ $500,000-399,000=$ \qquad
. Choose two numbers from the class newswire and figure out how far apart the numbers are. Show your thinking
For more practice representing larger numbers, complete the Big Numbers pages in your Student Activity Book

Patterns in the Base-Ten Pieces

$\begin{array}{llll}1000 & 100 & 10 \quad 1\end{array}$

these were cheese, I'd lik
Megabit to nibble, please.

Student Guide - Page 228

Discuss

The base-ten pieces are one model of the place value system. You have built models of base-ten pieces for numbers up to $1,000,000$. We have given special names to the base-ten pieces to help us talk about the patterns in our base-ten number system. Starting in the ones place we use the names bit, skinny, flat, super bit, super skinny, super flat, and megabit.
9. What patterns do you see in the shapes of the base-ten pieces?
10. The sizes of the pieces also form a pattern.
A. How many bits make a skinny?
B. How many skinnies make a flat?
C. How many flats make a super bit?
D. Describe the pattern. Do all the pieces follow the pattern?

We can write the value of each piece using the powers of 10 . For example, $100=10 \times 10$ and can be written as 10^{2}. This is read as " 10 to the second power," or " 10 squared." $1000=10 \times 10 \times 10$ and can be written as 10^{3}. This is read as " 10 to the third power," or "10 cubed." The following chart helps to show these patterns.
11. Draw the chart on your paper and fill in the missing spaces.

Base-Ten Chart		
Base-Ten Piece	Written as a Power of 10	Value
Bit	1	1
Skinny	$1 \times 10=10^{1}$	
Flat		100
Super Bit	$10 \times 10 \times 10=10^{3}$	
Super Skinny		10,000
Super Flat		
Megabit		

Student Guide - Page 229

Each repeating core pattern is called a period on the Place Value Chart The bit-skinny-flat group makes up the ones period.
The super bit-super skinny-super flat group makes up the thousands period
fe megabit begins the millions period.

Each period takes its name from the number that the cube represents in that each period takes its name from the number that the cube represents in that period to make reading easier. Remember, the comma or space alerts you to say the period name. For instance: $8,765,432$ is read as eight million, seven hundred sixty-five thousand, four hundred thirty-two.
$\sqrt{ }$ Check-In: Questions 12-14
12. Mr. Gupta used these Big Base-Ten Pieces to model a number for his students:

What number did Mr. Gupta model? Tell why he used the pieces he did by explaining how much each of these pieces represents.
13. Write a number sentence for the number Mr. Gupta showed in Question 12
14. Shannon started to show Mr. Gupta's number on a number line with baseten hoppers. Copy and finish Shannon's work.

230 SG \cdot Grade $4 \cdot$ Unit $6 \cdot$ Lesson 4
9. Beginning with the bit, the shapes form the pattern: bit (cube), skinny, flat, bit (cube), skinny, flat, bit (cube).
IO. A.* 10
B.* 10
C. * 10
D.* Each piece is 10 times as large as the piece to its right. All the pieces follow the pattern.
II.

Base-Ten Chart		
Base-Ten Piece	Written as a Power of 10	Value
Bit	1	1
Skinny	$1 \times 10=10^{1}$	10
Flat	$10 \times 10=10^{2}$	100
Super Bit	$10 \times 10 \times 10=10^{3}$	1,000
Super Skinny	$10 \times 10 \times 10 \times 10=10^{4}$	10,000
Super Flat	$10 \times 10 \times 10 \times 10 \times 10=10^{5}$	100,000
Megabit	$10 \times 10 \times 10 \times 10 \times 10 \times 10=10^{6}$	$1,000,000$

I2. 134,251; Look for an understanding of the values of the pieces. Mr. Gupta's super flat shows 100,000 , the 3 super skinnies show 30,000 , the 4 super bits show 4000 , the 2 flats show 200 , the 5 skinnies show 50 and the bit shows 1.
13. $100,000+30,000+4,000+200+50+1=$ 134,251
14.

Student Guide - Page 230

*Answers and/or discussion are included in the lesson.

I5. Irma
16. Possible response: $1,230,569$
17. Possible response: 9,653,021

Homework

Questions 1-7 (SG p. 231)
I. Students play the game at home.
2. 500
3. 25,000
4. 8000
5. 5
6. 700,000
7. 0

Draw, Place, and Read Play Draw, Place, and Read. Directions are in the Student Activity Book.

Tanya and Irma played Draw, Place, and Read. After all seven digit cards had been drawn, Tanya's number looked like this: $5,369,210$. Irma's number looked like this: 6,935,021. Read each number
15. Which of the girls recorded the larger number?
16. Use the same seven digit cards to make a number smaller than Tanya's and Irma's.
17. Use the same seven digit cards to make a number larger than Tanya's and Irma's.

Student Guide - Page 231

