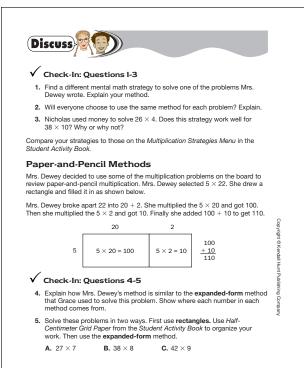
Student Guide

Questions 1–13 (SG pp. 280–282)


- 1.* Answers will vary. One possible response for 26×4 : double 26 is 52 and double 52 is 104.
- **2.*** No, some strategies work better for some students than for others.
- 3.* No, some strategies work better for some problems than for others. Using money makes sense for 26 × 4 because I can think about the problem as 25 × 4. 38 × 10 cannot be thought of with quarters, maybe dimes. But simply multiplying by 10 is a better strategy.
- **4.*** Both methods break 22 into 2 tens (or 20) and 2 ones. The 100 comes from 5×20 , the 10 from 5×2 . The answer is 100 + 10 = 110.

Β.

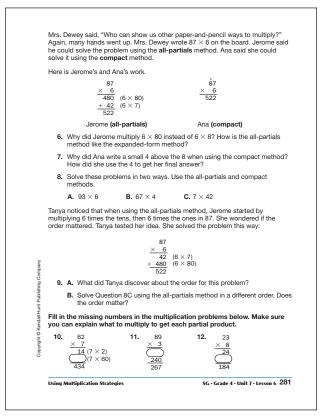
$$30 \qquad 8$$

$$8 \qquad 8 \times 30 = 240 \qquad 8 \times 8 = 64 \qquad \frac{240}{+ 64}$$

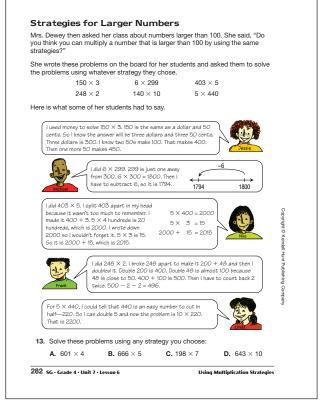
$$38 = 30 + 8 \\ \times 8 \qquad \times 8 \\ 240 + 64 = 304$$
C.
$$9 \qquad 9 \times 40 = 360 \qquad 9 \times 2 = 18 \qquad \frac{360}{+ 18}$$

Using Multiplication Strategies

I


280 SG · Grade 4 · Unit 7 · Lesson 6

*Answers and/or discussion are included in the lesson.

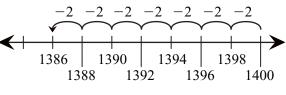

 $\frac{\times 9}{360 + 18 = 378}$

42 = 40 + 2

 $\times 9$

Student Guide- Page 281

*Answers and/or discussion are included in the lesson.


- 6. Jerome broke 87 into parts, 80 and 7, and multiplied each part separately. He multiplied 6×80 because the 8 in 87 means 80, not 8. In both methods, the tens and ones are multiplied separately.
- 7. The small 4 stands for the 4 tens in 42, which Ana got when she multiplied 6×7 . She added 4 tens to 48 tens which was her answer to 6×80 .

8.	Α.	$93 \\ \underline{\times 6} \\ 540 \\ \underline{18} \\ 558 $	$ \begin{array}{r} 1 \\ 93 \\ \underline{\times 6} \\ 558 \end{array} $
	B.	$ \begin{array}{r} 67 \\ \times 4 \\ 240 \\ 28 \\ 268 \end{array} $	$ \begin{array}{r} 2 \\ 67 \\ \times 4 \\ \hline 268 \end{array} $
	C.	$ \begin{array}{r} 42 \\ \times 7 \\ 280 \\ \underline{14} \\ 294 \end{array} $	$ \begin{array}{r} 1 \\ 42 \\ \times 7 \\ \overline{294} \end{array} $

9. A.

The order doesn't matter in the all-partials method in this problem.

- **B.** The order will not matter.
- **IO.** 420
- **II.** 27
- **12.** 160
- **13.** Responses will vary. Possible responses are:
 - **A.*** Partition 601 into $600 + 1.4 \times 600$ is 2400; $4 \times 1 = 4$; 2400 + 4 = 2404.
 - **B.*** Halve 666 and double 5. Half of 666 is 333. 333×10 is 3330.
 - **C.*** 198 is 2 less than 200; $200 \times 7 = 1400$; subtract 2 seven times to get 1386.

Answer Key • Lesson 6: Using Multiplication Strategies

Student Guide

Homework

Questions 1–5 (SG p. 283)

- I. A. 135 books
 - **B.** 126 letters
 - **C.** 245 cranes
 - **D.** 24 + 27 = 51 students $51 \times 6 = 306$ chocolate bars
- 2. Methods and strategies will vary.

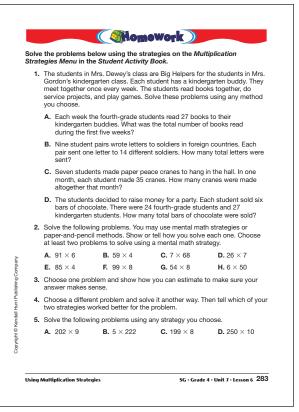
A. 546	B. 236	C. 476	D. 182
E. 340	F. 792	G. 432	H. 300

- **3.** Estimation strategies will vary. Possible response for Question B: $60 \times 4 = 240$; 236 is close.
- **4.** Answers will vary.
- 5. Strategies will vary. Possible strategies:
 - **A.** 1818; $200 \times 9 = 1800$ and $2 \times 9 = 18$; 1800 + 18 = 1818.
 - **B.** 1110; Half of 222 is 111 and 10×111 is 1110.
 - **C.** 1592; $200 \times 8 = 1600$; 1600 8 = 1592.
 - **D.** $250 \times 10 = 2500$

Teacher Guide

Two-Digit Multiplication Quiz

Questions 1–3 (TG)


I. Strategies and methods will vary. One possible method is given for each.

= 294

Α.	63	B. $6 \times 50 = 300$
	imes 7	300 - 6 = 294
	420	
	21	
	441	

- **C.** Possible estimation strategy is: $6 \times 50 = 300, 294$ is close to 300. 294 is a reasonable solution.
- **2.** An efficient strategy would be to multiply 100 \times 3 and then subtract 9 to get 291. While reading student explanations, look for evidence that they thought about the numbers in the problem before choosing a strategy.
- **3.** Ike started using the expanded form.

$$\begin{array}{r}
67 = 60 + 7 \\
\times 3 \\
\hline
180 + 21 = 201
\end{array}$$

Two-Digit M	ultip	olica	ation Quiz	
 Solve these problems. Choose problems. Choose a paper-and solution path for each problem 	d-pencil n			
A. 63 × 7	B	6 × 49		
C. Show how to find an estim and solution. Is your solution			3. Compare your estimate	
 Choose an efficient strategy to strategy is efficient for this pro 		× 3. Exp	lain why you think your	
 Ike started to solve this proble him using his strategy. 	m but cou	uld not fir	iish. Finish Ike's problem f	
$\frac{67 = 60 + 7}{\times 3}$				Copyright @ Kendall Hunt Publishing Company
Two-Digit Multiplication Quiz Feedback Box	Expec- tation	Check In	Comments	ndall Hunt P
Show understanding of how to use place value concepts and properties to multiply.	E3			ublishing Co
[Q# 3]	E6			ompan
[Q# 3] Estimate products. [Q# 1C]	1			×
	E7			

