Student Guide

Questions 1-23 (SG pp. 448-452)

- I. Yes
- **2.** No
- **3.** Answers will vary.
- **4.*** A sample class data table follows (Figure 1 from lesson).

To the Nearest Meter

Object	Measurement (nearest m)
Height of door	2 m
Width of classroom	8 m
Length of classroom	14 m
Width of chalkboard	5 m
Length of paper clip	0 m
Length of pencil	0 m

- **5.** A measurement of 0 m tells you the object is less than 0.5 m long. Centimeters or decimeters are more appropriate units.
- **6.** Two possible answers: a pencil and the diameter of a nickel.
- **7.** Two possible answers: The length of a room and the height of a building.
- **8.*** 10 skinnies
- **9.** 10 dm = 1 m; 5 dm = $\frac{1}{2}$ m
- **10.** $\frac{1}{10}$, tenth
- **II.** A sample class data table follows.

To the Nearest Decimeter

Object	Measurement (nearest dm)
Height of door	22 dm
Width of classroom	84 dm
Length of classroom	137 dm
Width of chalkboard	49 dm
Length of paper clip	0 dm
Length of pencil	1 dm

- **12.** The paper clip is less than 0.5 dm long. Centimeters would give a better measure.
- **13.** Two possible answers: The width of a desk and the length of your arm. (Note: Decimeters are not commonly used in the United States.)

Student Guide - Page 449

*Answers and/or discussion are included in the lesson.

Student Guide - Page 450

Student Guide - Page 451

*Answers and/or discussion are included in the lesson.

2 TG • Grade 4 • Unit 10 • Lesson 1 • Answer Key

- 14. 100 bits; explanations will vary. Without actually lining up the bits, a student can reason that there are 10 bits in a skinny and 10 skinnies in a meterstick: $10 \times 10 = 100$ bits.
- **15.** 1 cm
- 16. A sample class data table follows.

To the Nearest Centimeter

Object	Measurement (nearest m)
Height of door	223 cm
Width of classroom	838 cm
Length of classroom	1372 cm
Width of chalkboard	487 cm
Length of paper clip	3 cm
Length of pencil	14 cm

- **17.*** Two possible answers to measure in cm: a calculator and an eraser. Two possible answers not to measure in cm: distance from school to home and length of side of school building.
- **18.** A possible answer: The thickness of a pencil lead.
- 19. $\frac{1}{1000}$, thousandth
- **20.** 10 mm = 1 cm
- **21.** 100 mm = 1 dm; explanations will vary. Students could reason that they see 10mm in one cm on a ruler, and there are 10 cm in one dm. $10 \times 10 = 100$ mm in a dm.
- **22.*** A possible answer: The thickness of a dime.

- **23. A.** 3 metersticks, 4 skinnies, 5 bits
 - **B.** 5 skinnies, 9 bits
 - C. 2 metersticks, 7 skinnies
 - **D.** 2 metersticks, 7 bits

Homework (SG p. 453)

Questions 1–3

- I. Answers will vary.
- 2. A–C. Answers will vary.
- **3.** Answers will vary.

	u. 2.07 m
	C. 2./0 m
	B. 0.59 m
	A. 3.45 m
23.	John wrote the following measurements on his paper. He used the fewest pieces for each measurement. How many metersticks, skinnies, and bits did John use for each measurement?
John of a n baske He us meas 8 cen	ontinued to measure objects around the room to the nearest hundredth eter. For example, Mrs. Dewey had a life-size poster of a professional ball player on the wall. John decided to measure the height of this player. ed 1 meterstick, 9 skinnies, and 8 bits. John wrote "1.98 meters" for this rement. That told him the player's height was 1 meter, 9 decimeters, and meters.
She s read t show four s	d to the class, "This number is vo and forty-one hundredths. John d 2.41 meters with two metersticks, innies, and 1 bit."
"One, to the	said John. Mrs. Dewey added "1" 2.41 m
"Each a met	centimeter is one-hundredth of rr. How many bits did you use?"
"Four	said John. Mrs. Dewey added ".4" to the board.
"Each	decimeter is one-tenth of a meter. How many skinnies did you use, John?"
"Two,	said John. Mrs. Dewey wrote "2" on the board.
Mrs. I have down	ewey complimented John's work: "John, you have done a terrific job. You ound the length of the chalkboard using the fewest pieces. You can write this measurement using decimals. How many metersticks did you use?"
Then this le	ohn said, "There are 100 bits in a meter and 10 bits in a skinny. So that means igth is 240 bits long, plus one more bit makes it 241 bits. 241 centimeters."
John	till had a little space left. He put down one bit. One bit is one centimeter long.
So, to	the skinny is one decimeter long. I have two metersticks and for skinnies, the nearest decimeter, this length is 24 whole decimeters."

Student Guide - Page 452

Student Activity Book

Class Measurement Tables (SAB p. 399)

See Questions 4, 11, and 16 in the *Student Guide* Answer Key.

Measure Hunt (SAB pp. 401–402)

Answers will vary.

Copyright © Kendall Hunt Publishing Company

Dear F In ever use of alread metric of the Thank	family Member yday life in th i metric measu y here. To suc system. This increasing us you.	r: le United States, urements. In scie ceed in a techno homework assig e of metric unite	, we are slowly r ntific life, hower logical world, st mment will help	noving to ver, the n Sudents r your chil	oward re netric sy need to l d becom	gular /stem is know the le aware
so on) in e	everyday life, ers, liters, gra	there are many t ims, and so on).	times we use n	netric un	its of m	easure
1. Loo Ma brir	ok for metric u ke a list show	units in the news ving what the un er with the meas	paper, on labe it is and what is urement on it.	ls, and a s being r	round th neasure	he house. d. If you c
2. A. B.	Use a piece of Estimate the	of string 1 meter length of variou:	long. s objects to the	e nearest	t meter.	Then use
	your meter st table showin	tring to measure g the objects, yo	the objects to our estimates, a	the near and your	rest met measur	er. Make a rements.
	your meter st table showing	tring to measure g the objects, yo Object	the objects to our estimates, a Estimated Lo (nearest mo	the near and your ength eter)	rest met measur Lo (neare	er. Make a rements. ength est meter)
	your meter st table showing Height of	tring to measure g the objects, yo Object Little sister	the objects to our estimates, a Estimated Lo (nearest mo 1 meter	the near and your ength eter)	rest met measur (neare 1 m	er. Make a rements. ength est meter) neters
	your meter si table showing Height of Height of	tring to measure g the objects, you Object Little sister refrigerator	the objects to our estimates, a Estimated Li (nearest m 1 meter 3 meters	the near and your ength eter)	rest met measur (neare 1 m 2 n	er. Make a rements. ength est meter) neters neters
3 60	Your meter st table showing Height of Height of	tring to measure g the objects, you Object Little sister refrigerator	the objects to our estimates, a Estimated Lo (nearest m 3 meters	the near and your ength eter)	rest met measur (neare 1 m 2 n	er. Make a rements. ength est meter) neters neters
3. Go obj	Height of Height of Height of On a measure ects that are	tring to measure g the objects, yc Object Little sister refrigerator e hunt in your ho between the spo	the objects to our estimates, a Estimated Lo (nearest m 3 meters ome. Look for coffied to the oppo	the near and your ength eter)	est met measur (neare 1 m 2 n	er. Make a rements. ength est meter) neters neters Object
3. Go obj len, (Hir	your meter sl table showin Height of Height of on a measure ects that are gths. Comple ht: Half of you	tring to measure g the objects, yo Object Little sister refrigerator e hunt in your ho between the spe te a data table li ur string is 0.5 m	the objects to ur estimates, a Estimated L (nearest m 1 meter 3 meters orme. Look for scified ke this one)	ength eter)	rest met measur (neare 1 m 2 n ule veen 1 2 m	er. Make a rements. ength est meter) neters object
3. Go obj len (Hir	your meter st table showin Height of Height of on a measure ects that are gths. Comple ht: Half of you	tring to measure g the objects, yo Object Little sister refrigerator e hunt in your ho between the spe ite a data table li ir string is 0.5 m	the objects to our estimates, a Estimated L (nearest m 1 meter 3 meters orme. Look for acified ke this one)	Ru Betw 1 and 1 and 1 and	Le veen 1.5 m	er. Make a rements. ength sst meter) neters neters Object
3. Go obj lenn (Hir	Height of Height of Height of On a measure ects that are gths. Comple	tring to measure g the objects, you Object Little sister refrigerator e hunt in your ho between the spe- te a data table li ar string is 0.5 m	the objects to our estimates, a Estimated L (nearest m 1 meter 3 meters 3 meters orme. Look for actified ke this one. .)	Ru Betw 1 and 0.5 an	Le veen 1.5 m veen d 1 m	er. Make a rements. ength sst meters neters Object

Student Guide - Page 453