

Student Guide

Questions 1-6 (SG pp. 554-557)

- I.* As the crow added pebbles to the pitcher, the water in the pitcher was displaced or pushed away by the pebbles, so the water level rose.
- **2.*** No, each pebble took up a different amount of volume, so the water level rose a different amount each time.
- **3. A.*** 60 cc

B.* 10 cc

- **4.** About 11 cc
- **5. A.*** Read at eye level, at the bottom of the meniscus, and holding the cylinder level.
 - **B.*** Jerome should not look from above or below or tilt the cylinder.

Student Guide - Page 556

*Answers and/or discussion are included in the lesson.

Answer Key • Lesson 1: Measuring Volume

6. Jerome should compare his measurement to his estimate.

Student Activity Book

Estimating and Measuring Volume (SAB pp. 541-542)

Questions 1–4

- 1. 8 cc
- **A–C.** Observe students as they follow directions.
 - **D.*** 8 cc; The cubes displaced or pushed away 8 cc of water, so the water level went up.
- **2.** Estimates and volumes will vary based on models made.

Student Activity Book - Page 541

Student Guide - Page 557

V	olume Data Ta T	ble	1
Object	Estimated Volume from Cube Model	Volume by Displacement	
Rock	11 cc	12 cc	
Clay	16 cc	15 cc	
			Contration -
3. A. Were y	our estimates clos	se to your measu	red volumes? Why or why not?
 A. Were yr B. Which Frank mad counting th When he n volume to 	estimates closestimates closestimates were cl e a model of a m e cubes, he estim easured the volu be 11 cc. Why do	se to your measu osest to the measu arker using centin mated that the mo using a gradu o you think there i	red volumes? Why or why not? sured volumes? Why? neter connecting cubes. By arker has a volume of 14 cc. justed cylinder, he found the s a 3 cc difference?
 A. Were ye B. Which Frank mad counting ti When he n volume to 	bur estimates clos estimates were cl ie a model of a m re cubes, he estir neasured the volu be 11 cc. Why do	se to your measu osest to the mean arker using centir nated that the m me using a gradu o you think there i	red volumes? Why or why not? sured volumes? Why? meter connecting cubes. By arker has a volume of 14 cc. uated cylinder, he found the s a 3 cc difference?

Student Activity Book - Page 542

- **3. A.*** Answers will vary. Possible response: Some of my estimates were not close to my measured volumes. It was difficult to make the centimeter connecting cube model look exactly like the object I was measuring.
 - **B.*** Possible response: The estimates for the objects that more closely resembled the connecting cube models were easier for me to build and to use to estimate the measured volume.
- **4.*** Answers will vary. The marker is slightly thinner than one cm and the marker tapers off at the ends. There may also be measurement error.

Student Activity Book

Homework (SAB pp. 543-544)

Questions 1–5

- 1. Answers will vary. Students may notice that each scale goes up to about 100 and that they both start at zero. On the 100-cc scale, the multiples of 10 are written on the scale. On the 250-cc scale, the multiples of 20 are written on the scale.
- **2.** 1 cc
- **3.** 2 cc
- **4.** 100 cc cylinder:
 - A=83 cc
 - B=68 cc
 - C=59 cc
 - D=41 cc
 - E=35 ccF=20 cc
 - ____
 - 250 cc cylinder:
 - A=121 cc
 - B=105 cc
 - C=72 cc
 - D=48 ccE=24 cc
 - E = 24 ccF=10 cc
- **5.** 16 cc. The water rose from 50 cc to 66 cc. 66 50 = 16 cc.

Student Activity Book - Page 543

Student Activity Book - Page 544