6. Jerome should compare his measurement to his estimate.

Student Activity Book

Estimating and Measuring Volume
 (SAB pp. 541-542)

Questions 1-4

I. 8 cc

A-C. Observe students as they follow directions.
D. ${ }^{8} \mathrm{cc}$; The cubes displaced or pushed away 8 cc of water, so the water level went up.
2. Estimates and volumes will vary based on models made.

Jerome carefully added a rock to the graduated cylinder.

6. How can Jerome check the reasonableness of his volume measurement?
[Hint: Use Question 4.] [Hint: Use Question 4.]

Use the Estimating and Measuring Volume pages in the Student Activity Book to practice finding the volume of objects using displacement.

$$
\text { SG • Grade 4 • Unit 13• Lesson } 1557
$$

Student Guide - Page 557

*Answers and/or discussion are included in the lesson.

Name \qquad Date \qquad

Volume Data Table		
Object	Estimated Volume from Cube Model	Volume by Displacement
Rock	11 cc	12 cc
Clay	16 cc	15 cc

3. A. Were your estimates close to your measured volumes? Why or why not?
B. Which estimates were closest to the measured volumes? Why?
4. Frank made a model of a marker using centimeter connecting cubes. By counting the cubes, he estimated that the marker has a volume of 14 cc When he measured the volume using a graduated cylinder, he found the volume to be 11 cc . Why do you think there is a 3 cc difference?

542 SAB . Grade 4. Unit 13 . Lesson 1 Measuring Volume
3. A.* Answers will vary. Possible response: Some of my estimates were not close to my measured volumes. It was difficult to make the centimeter connecting cube model look exactly like the object I was measuring.
B. * Possible response: The estimates for the objects that more closely resembled the connecting cube models were easier for me to build and to use to estimate the measured volume.
4.* Answers will vary. The marker is slightly thinner than one cm and the marker tapers off at the ends. There may also be measurement error.

Student Activity Book

Homework (SAB pp. 543-544)

Questions 1-5

I. Answers will vary. Students may notice that each scale goes up to about 100 and that they both start at zero. On the $100-\mathrm{cc}$ scale, the multiples of 10 are written on the scale. On the $250-\mathrm{cc}$ scale, the multiples of 20 are written on the scale.
2. 1 cc
3. 2 cc
4. 100 cc cylinder:
$\mathrm{A}=83 \mathrm{cc}$
$\mathrm{B}=68 \mathrm{cc}$
$\mathrm{C}=59 \mathrm{cc}$
$\mathrm{D}=41 \mathrm{cc}$
$\mathrm{E}=35 \mathrm{cc}$
$\mathrm{F}=20 \mathrm{cc}$
250 cc cylinder:
$\mathrm{A}=121 \mathrm{cc}$
$\mathrm{B}=105 \mathrm{cc}$
$\mathrm{C}=72 \mathrm{cc}$
$\mathrm{D}=48 \mathrm{cc}$
$\mathrm{E}=24 \mathrm{cc}$
$\mathrm{F}=10 \mathrm{cc}$
5. 16 cc . The water rose from 50 cc to 66 cc . $66-50=16 \mathrm{cc}$.

Student Activity Book - Page 543

Student Activity Book - Page 544

