

Exponents
Discuss
In the story Sand Reckoning, Archimedes estimated that the number of grains of sand it would take to fill the universe was the number $10^{63}.$
10 ⁶³ means we multiply 10 by itself 63 times. "Who thought of that?" asked Ellen.
$ \begin{array}{c} 10^2 \text{ means } 10 \times 10 = 100. \\ 10^3 \text{ means } 10 \times 10 \times 10 = 1000. \\ 10^6 \text{ means } 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 1,000,000. \end{array} $
When we write 10 ⁶ , the number 10 is called the base . The number 6 is the exponent or power . We say "ten to the sixth power" or just "ten to the sixth power" or just "ten to the sixth power or 10.
Other numbers can be written using exponents.
base. The hardness of a the experiment of power. We say then to the sixth power or just then to the sixth." We call 10^{6} the sixth power or 10. Other numbers can be written using exponents. For example, 2^{9} means $2 \times 2 \times 2 = 8$ 5^{7} means $3 \times 3 \times 3 \times 3 = 81$ 7^{7} means 7
When we write 2 ³ , the 2 is the base and 3 is the power or exponent.
4. A. Name the base and the exponent in 5 ² .
B. Name the base and the power in 3 ⁴ .
5. Find <i>n</i> . A. $4^3 = n$ B. $2^5 = n$ C. $6^1 = n$
 A. 4° = n B. 2° = n C. 6° = n 6. Write the following using exponents. Then find the value of n.
6. Write the following using exponents. Then find the value of <i>n</i> . Example: $5 \times 5 \times 5 \times 5 = n$ $5^4 = 625$
A. $4 \times 4 \times 4 = n$ B. $2 \times 2 \times 2 \times 2 \times 2 \times 2 = n$ C. $8 \times 8 \times 8 = n$
Exponents and Large Numbers SG - Grade 5 - Unit 3 - Lesson 4 15

Student Guide - Page 153

* Answers and/or discussion are included in the lesson.

TG • Grade 5 • Unit 3 • Lesson 4 • Answer Key

Student Guide

Exponents and Large Numbers (SG pp. 144, 153–154) Questions 1–11

- $1.*30 \text{ ft.} \times 50 \text{ ft.} = 1500 \text{ sq. ft.}$ in the yard
- **2.*** 1500 sq ft \times 100 leaves per sq. ft. = 150,000 leaves
- **3. A.*** 20 yards × 150,000 leaves per yard = 3,000,000 leaves or about 3 million leaves
 - **B.*** 300 blocks × 3,000,000 leaves per block = 900,000,000 leaves or about 9 hundred million in town
- **4. A.*** base: 5; exponent: 2
 - **B.*** base: 3; power: 4
- **5. A.*** 64
 - **B.** 32
 - **C.** 6
- **6. A.** $4^3 = 64$
 - **B.** $2^6 = 64$
 - **C.** $8^3 = 512$

Answer Key • Lesson 4: Exponents and Large Numbers

- **7. A.*** 10
 - **B.** 100
 - **C.** 1000
 - **D.** 10,000
 - **E.** 100,000
 - **F.** 1,000,000
 - **G.** 10,000,000
 - **H.** 100,000,000
- **8. A.*** Each power of ten can be written as 1 followed by the same number of zeros as the exponent.
 - B.* The pattern works because the places in a number in the base-ten system stand for ten times the place to the right. So each time you add a zero, it adds another place to the number.
- **9. A.** 1,000,000,000
 - **B.** 100,000,000,000
- **IO.** 1 followed by 63 zeros
- **II. A.** 10¹⁰
 - **B.** 10¹²

Homework (SG p. 155) Questions 1–3

- **I. A.** $5^3 = 125$
 - **B.** $3^5 = 243$
 - **C.** $10^3 = 1000$
 - **D.** $7 = 7^1$
- **2. A.** 16
 - **B.** 125
 - **C.** 81
 - **D.** 27
 - **E.** 16
 - **F.** 216
 - **G.** 10,000,000,000
 - **H.** 12
 - **I.** 400
- **3.** A. Estimates will vary. One reasonable estimate is 150,000 leaves \times 30 students or 4,500,000 leaves.
 - **B.** Estimates will vary. One reasonable estimate is 4,500,000 leaves $\times 20$ classrooms = 90,000,000 leaves.

7.	Find <i>n</i> . A. $10^1 = n$ E. $10^5 = n$	B. $10^2 = n$ F. $10^6 = n$	C. $10^3 = n$ G. $10^7 = n$	D. $10^4 = n$ H. $10^8 = n$	
8.			in the numbers in ce value to explain	Question 7. why the pattern works.	
9.	Use the pattern A. $10^9 = n$	s from Question 8 B. $10^{11} = n$	to find n.		
10.	Describe in wor	rds what 10 ⁶³ looks	s like written in star	ndard form.	
11.	Write each num A. 10,000,000,	ber using exponer 000	nts. B. 1,000,000,0	000,000	
	senting numbers				Copyright u
					Copyright @ Kendal I Hunt Publishing Company

	elp answer these qu		
 Write the following example. 	ng using exponents.	Then find the value of <i>n</i> . Follow	the
Example: n =			
2 ⁴ =	16		
A. $n = 5 \times 5 \times 5$	i E	$a. \ n = 3 \times 3 \times 3 \times 3 \times 3$	
C. $n = 10 \times 10 >$	< 10 🛛). <i>n</i> = 7	
2. Find n.			
A. $2^4 = n$	B. $5^3 = n$	C. $9^2 = n$	
D. $3^3 = n$	E. $4^2 = n$	F. $6^3 = n$	
G. $10^{10} = n$	H. $12^1 = n$	1. $20^2 = n$	
3. Ellen and her fat	her estimated that th	here were 150,000 leaves in their	yaro
150,000 leave		ass. If every student has to rake a estimate the number of leaves t ur thinking.	
same number	of students. Estima	school. Each classroom has abo te the number of leaves raked by to rake about 150,000 leaves.	

Student Guide - Page 155

MUI	tiply by Multiples of 1	en
Discuss		
en million) miles. Th	e Earth to the sun is 90,000,000 (rounded to e number 90,000,000 is written here in standa ite this number in shorter form.	
	$90,000,000 = 9 \times 10,000,000 = 9 \times 10^7$	
$ imes$ 10 7 means to m	ultiply 9 \times 10 \times 1	0.
	zeros do you see in this number? Use what y	you have lear
B. How many about pow	zeros do you see in this number? Use what y	
B. How many about pow 2. Complete the Shorter Form	zeros do you see in this number? Use what y ers of ten to explain why. table. Identify any patterns you see.	
 B. How many about pow 2. Complete the Shorter Form Using Exponents 	zeros do you see in this number? Use what y ers of ten to explain why. table. Identify any patterns you see. Expanded Form	Produc
 B. How many about pow 2. Complete the Shorter Form Using Exponents 9 × 10¹ 	zeros do you see in this number? Use what y ers of ten to explain why. table. Identify any patterns you see. Expanded Form 9 × 10	Produc
B. How many about pow 2. Complete the Shorter Form Using Exponents 9×10^1 9×10^2	zeros do you see in this number? Use what y ers of ten to explain why. table. Identify any patterns you see. Expanded Form 9 × 10	Product 90
B. How many about pow 2. Complete the Shorter Form Using Exponents 9×10^1 9×10^2	zeros do you see in this number? Use what y ers of ten to explain why. table. Identify any patterns you see. Expanded Form 9×10 9×10	Produc 90
B. How many about pow 2. Complete the Shorter Form Using Exponents 9×10^1 9×10^2 9×10^3	zeros do you see in this number? Use what y ers of ten to explain why. table. Identify any patterns you see. Expanded Form 9×10 9×10	Produc 90

Student Activity Book - Page 135

writin		plete some of this table. Use what yo panded form and in shorter form usin	
Planet	Approximate Distance from the Sun (miles)	Distance from the Sun Expanded Form	Distance from the Sun Using Exponents
Mercury	40,000,000	$4\times10\times10\times10\times10\times10\times10\times10\times10=$	
Venus	70,000,000		$7 imes 10^7$
Earth	90,000,000	9 imes 10 imes 10 imes 10 imes 10 imes 10 imes 10 imes 10 =	
Mars	100,000,000		
Jupiter	500,000,000		$5 imes 10^8$
Saturn	900,000,000		
Uranus	2,000,000,000		$2 imes 10^9$
Neptune	3,000,000,000		
moor 200,0 A. H th	n. The average d 000 miles. low many total m	sions included six manned spacecrafistance between the earth and the mo iiles were traveled to complete ndings? Show or tell how you r.	
		er to the nearest million. Write the nur orm, and in shorter form using an expo	

Student Activity Book - Page 136

* Answers and/or discussion are included in the lesson.

Student Activity Book

Multiply by Multiples of Ten Questions 1–4 (SAB pp. 135–136)

- I. A.* 90,000,000
 - **B.*** There are seven zeros. Possible response: Since you multiply by 10 seven times you will have seven zeros in the answer—one for each ten.)

2.*

Shorter Form Using Exponents	Expanded Form	Product
$9 imes 10^1$	9 × 10	90
$9 imes 10^2$	9 imes10 imes10	900
$9 imes 10^3$	$9 \times 10 \times 10 \times 10$	9000
9 × 104	$9\times10\times10\times10\times10$	90,000
$9 imes 10^5$	$9 \times 10 \times 10 \times 10 \times 10 \times 10$	900,000
9 × 10 ⁶	$9 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$	9,000,000
9 × 107	$9\times10\times10\times10\times10\times10\times10\times10$	90,000,000

3.*

Planet	Approximate Distance from the Sun (miles)	Distance from the Sun Expanded Form	Distance from the Sun Using Exponents
Mercury	40,000,000	$4\times10\times10\times10\times10\times10\times10\times10=$	4×10^{7}
Venus	70,000,000	$7 \times 10 =$	$7 imes 10^7$
Earth	90,000,000	$9 \times 10 =$	9 × 10 ⁷
Mars	100,000,000	$1\times10\times10\times10\times10\times10\times10\times10\times10\times10$	1×10^{8}
Jupiter	500,000,000	$5 \times 10 \times 1$	$5 imes 10^8$
Saturn	900,000,000	9 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 1	9 × 10 ⁸
Uranus	2,000,000,000	2 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 1	$2 imes 10^9$
Neptune	3,000,000,000	$3 \times 10 \times 1$	3 × 10 ⁹

- **4. A.** 2,400,000 miles; Possible response: I multiplied $6 \times 200,000 = 1,200,000$ and then I doubled that since they had to travel both ways 1,200,000 doubled is 2,400,000 miles.