Answer Key • Lesson 2: Equivalent Fractions and Ratios

Student Activity Book

Fraction Cover-Up 1 (SAB pp. 197–198) Questions 1–10

- **2.*** The denominator is 2 times larger than the numerator.
- **3.*** Yes. Explanations may vary. In each example, if you take $\frac{1}{2}$ and multiply both the numerator and the denominator by the same thing, you will get an equivalent fraction.
- **4.** $*\frac{1}{2}$. The fewest number of fraction pieces makes it.
- **5.** Possible responses: 1, 2; 2, 4; or 3, 6, etc.
- **6.** 1
- **7.** Possible responses: $\frac{1}{2}$, $\frac{2}{4}$, $\frac{3}{6}$, $\frac{4}{8}$, etc.
- **8.** Possible responses: $\frac{2}{1}$, $\frac{4}{2}$, $\frac{6}{4}$, etc.
- **9.** $\frac{2}{1}$
- 10. $\frac{1}{2}$

Student Activity Book - Page 197

5.	It takes orange piece(s) to cover aqua piece(s).	
6.	It takes orange piece(s) to cover two aqua pieces.	
A rati	io is a comparison of two quantities. One way to write a ratio is as a fraction.	
7.	Write a ratio of the number of orange pieces to the number of aqua pieces needed to cover the same area.	
	orange pieces aqua pieces	
8.	Write a ratio of the number of aqua pieces to the number of orange pieces needed to cover the same area.	
	aqua pieces orange pieces	Copyrig
9.	Write the simplest ratio of aqua pieces to orange pieces.	tht © Ken
	aqua pieces orange pieces	dall Hunt Publishi
10.	Write the simplest ratio of orange pieces to aqua pieces.	ng Compa
	orange pieces aqua pieces	ny

Student Activity Book - Page 198

*Answers and/or discussion are included in the lesson.

Student Activity Book - Page 199

2.	Which boxes could you not write a fraction for? Why not?
3.	What patterns do you notice about the fractions in each row?
4.	What is the relationship between the numerator and denominator for each fraction in Row B?
5.	Are all the fractions in Row B equivalent? Explain your answer.
6.	Are all the fractions in Row E equivalent? Explain your answer.
7.	In which rows are the fractions greater than one?
8.	Which fraction is the simplest in each row? Why do you think so?

*Answers and/or discussion are included in the lesson.

I. A–E.

- **2.*** See chart. You can't cover the two colors evenly.
- **3.** When moving from 1 equivalent fraction to the next the increase in the numerator is consistent and the increase in the denominator is consistent.
- **4.** The numerator is 2 times greater than the denominator.
- **5.** Yes. Explanations may vary. The numerator equals 2 times the denominator.
- **6.** Yes. Explanations may vary. For every 4 yellow pieces, I need 3 orange pieces.
- 7. Rows B, C, and E
- **8.** The first one listed. Explanations may vary. We look for the relationship using the fewest possible pieces.

Answer Key • Lesson 2: Equivalent Fractions and Ratios

- **9.** 4 yellow; 1 red
- **IO.** 1 yellow; 3 blacks
- $\begin{array}{c}
 \mathbf{II.} & \frac{1}{4} \\
 \mathbf{I2.} & \frac{1}{3} \\
 \mathbf{I3.} & \frac{1}{2} \\
 \mathbf{I4.} & \frac{4}{3}
 \end{array}$

	your data in Table 2 to find the ratios in Questions 0, 14 with your parts
Write	your answers in the spaces.
9.	It takes yellow piece(s) to cover red piece(s).
10.	It takes yellow piece(s) to cover black piece(s).
11.	It takes red piece to cover one yellow piece.
12.	It takes yellow piece to cover one black piece.
13.	Write the simplest ratio of yellow pieces to blue pieces needed to cover th same area.
	yellow pieces blue pieces
14.	Write the simplest ratio of yellow pieces to orange pieces needed to cover the same area.
	yellow pieces orange pieces
Fauiva	lent fractions and Ratios SAR - Grade 5 + Unit 5 + Jesson 2-2
rdaina	

Student Activity Book - Page 201

Student Activity Book - Page 203

Name			Date	
3.	Decimal fractions unit whole.	also represent fractio	nal parts. Use the red circle as th	е
	A. Work with you combination of	r partner to show the of purple, green, yellow	following decimal fractions with a w, orange, or pink pieces.	l
	.5	1.2	.8	
	B. Write a comm	on fraction next to the	e decimal fraction.	
	.5	1.2	.8 8.	
Jse y ind ra ractio	our data in Table atios in Question ons represent fra	3 and your fraction s 4–12. The red circle ctional parts.	circle pieces to find the fraction b is the unit whole, and decimal	IS
4.	It takes	_ purple pieces to cov	ver one red piece.	
5.	A. One purple pi	ece covers what fract	ion of the red circle?	
	B. Write a decim	al fraction for one pur	ple piece	

Student Activity Book - Page 204

*Answers and/or discussion are included in the lesson.

I. A–E.

TABLE 3								
	Ś		Carlos Carlos					
A. Number of Purple Number of Green	<u>2</u> 1	×	$\frac{8}{4}$	$\frac{10}{5}$	×	$\frac{20}{10}$		
B. Number of Purple Number of Yellow	×	$\frac{5}{2}$	×	$\frac{10}{4}$	$\frac{15}{6}$	$\frac{20}{8}$		
C. Number of Purple Number of Orange	×	×	×	$\frac{10}{3}$	×	$\frac{20}{6}$		
D. Number of Purple Number of Pink	×	$\frac{5}{1}$	×	$\frac{10}{2}$	$\frac{15}{3}$	$\frac{20}{4}$		
E. Number of Purple Number of Red	×	×	×	$\frac{10}{1}$	×	$\frac{20}{2}$		

- **2.*** See chart. You can't cover the two colors evenly.
- **3. A.***Answers will vary.

4 TG • **Grade 5** • **Unit 5** • **Lesson 2** • **Answer Key**