Student Guide

Order of Operations with Exponents (SG pp. 446–448) Questions 1–9

- **1.*** Shannon and Roberto wrote true number sentences. Ming did not. Change Ming's number sentence to $(1 + 3) \div 2 + 4 = 6$ to make it true.
- **2.** Some may have more than one possible solutions.

A.
$$1 + 2 + 3 + 4 = 10$$
; $3 + 4 \times 2 - 1 = 10$

B.
$$3 \times 4 + 2 \times 1 = 14$$
; $1 \times 3 \times 4 + 2 = 14$

C.
$$(4 + 2 + 1) \times 3 = 21$$
;
 $4 \times (2 + 3) + 1 = 21$

D.
$$4 - 3 + 2 \div 1 = 3$$
; $(3 \times 2) - (4 - 1) = 3$

3. Possible solution:

The largest whole number is 36;

$$4 \times 3 \times (2 + 1) = 36$$

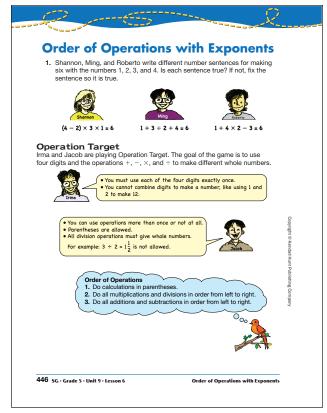
The smallest whole number is 0:

$$1+4-3-2=0$$

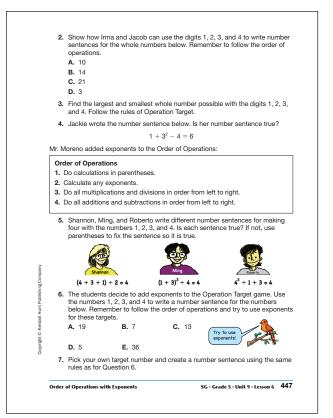
- **4.** Yes, her number sentence is true.
- **5.*** Shannon and Ming wrote true number sentences. Roberto did not. Change Roberto's number sentence to $4^2 \div (1+3) = 4$ to make it true.
- **6.** There may be more than one possible solution:

A.
$$4^2 + 3^1 = 19$$
; $4^2 + 3 \times 1 = 19$

B.
$$2^3 - 1^4 = 7$$


C.
$$2^3 + 4 + 1 = 13$$

D.
$$3^2 - 4^1 = 5$$


E.
$$3^2 \times 4^1 = 36$$
; $3^2 \times 4 \times 1 = 36$

7. Answers will vary.

Copyright © Kendall Hunt Publishing Company

Student Guide - Page 446

Student Guide - Page 447

^{*}Answers and/or discussion are included in the lesson.

Student Guide - Page 448

- **8. A.** True
 - **B.** Not true; $(4 + 2) \div 3 \times 1 = 2$
 - C. True
 - **D.** Not true; $(4 + 1)^3 + 2 = 127$
- **9. A.** 23
 - **B.** 26
 - **C.** 81
 - **D.** 41

Homework (SG p. 448) Questions 1-2

- I. A. 9
 - **B.** 1
 - **C.** 169
 - **D.** 1069
 - **E.** 145
 - **F.** 19
- **2.** There may be more than one possible solution:

A.
$$4 \times 2 + 3 + 1 = 12$$
;

$$4^2 - 3 - 1 = 12;$$

 $1 \times 2^3 + 4 = 12$

B.
$$2^4 + 1^3 = 17$$

C.
$$4^3 - 1^2 = 63$$

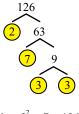
D.
$$(3+4)^2+1=50$$

Teacher Guide

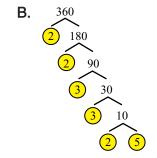
Rachel's Problems (TG pp. 1-2) Questions 1-2

I. A.

$S = 4 + N \times 3$	
N Input Number	S Output Number
1	7
2	10
3	13
4	16
10	34
50	154

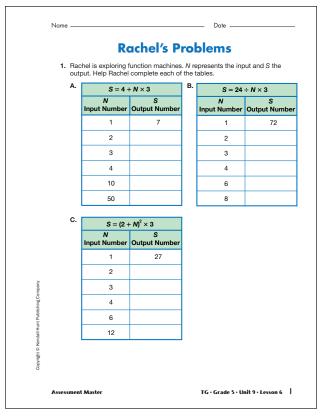

B.

$S = 24 \div N \times 3$		
N Input Number	S Output Number	
1	72	
2	36	
3	24	
4	18	
6	12	
8	9	

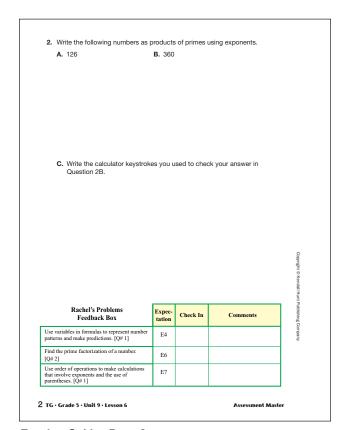

C.

$S = (2 + N)^2 \times 3$	
N Input Number	S Output Number
1	27
2	48
3	75
4	108
6	192
12	588

2. A.



 $2 \times 3^2 \times 7 = 126$



 $2^3 \times 3^2 \times 5 = 360$

^ 3 × 3

Teacher Guide - Page 1

Teacher Guide - Page 2