Helipads for Antopolis
Est. Class Sessions: 2Developing the Lesson
Part 1: Comparing Rectangles
Provide each group of 2–3 students with one piece of wire or string 24 inches long. Ask each student group to measure the wire, and then make a rectangle with it. If string is used, students will need to tape their rectangle to a piece of Square-Inch Grid Paper. If string or wire is not available, ask student groups to draw a rectangle with a perimeter of 24 inches on a sheet of Square-Inch Grid Paper.
Before comparing rectangles, ask the following questions about each group's rectangle. Students can use their rulers and the Square-Inch Grid Paper to find the answers.
Students using string or twist ties will most likely have rectangles with side lengths that are not whole numbers. Have these students estimate the area to the nearest square inch.
Have each group compare their rectangle to the rectangles of neighboring groups and discuss:
Ask volunteers from two of the groups to compare their rectangles in front of the class. Ask the class to vote on which of the rectangles has the largest area. Ask a few of the students why they thought the rectangle they voted for was the larger one. Now ask if there is a group whose rectangle has a larger area than either of the two rectangles on display. Have a volunteer from the group bring their rectangle to the front and compare it. The class can vote again on which one has the largest area. Again, ask a few students for a reason they thought one was larger than the other.
Students should realize that even though the perimeter of each rectangle is 24 inches, the rectangles have different shapes and areas.
When creating and comparing the rectangles, some students may not know that a square is a rectangle. Knowing that a square is a rectangle is necessary to solve the problem that will be explored later in this lesson. Ask students to define a rectangle and then to explain whether a square fits that definition. The Content Note discusses the definitions of a rectangle and a square.